Air conditioner inverter Air door Air filter Air handler Air ionizer Air-mixing plenum Air purifier Air source heat pumps Automatic balancing valve Back boiler Barrier pipe Blast damper Boiler Centrifugal fan Ceramic heater Chiller Condensate pump Condenser Condensing boiler Convection heater Cooling tower Damper Dehumidifier Duct Economizer Electrostatic precipitator Evaporative cooler Evaporator Exhaust hood Expansion tank Fan coil unit Fan heater Fire damper Fireplace Fireplace insert Freeze stat Flue Freon Fume hood Furnace Furnace room Gas compressor Gas heater Gasoline heater Geothermal heat pump Grease duct Grille Ground-coupled heat exchanger Heat exchanger Heat pipe Heat pump Heating film Heating system High efficiency glandless circulating pump High-efficiency particulate air (HEPA) High pressure cut off switch Humidifier Infrared heater Inverter compressor Kerosene heater Louver Mechanical fan Mechanical room Oil heater Packaged terminal air conditioner Plenum space Pressurisation ductwork Process duct work Radiator Radiator reflector Recuperator Refrigerant Register Reversing valve Run-around coil Scroll compressor Solar chimney Solar-assisted heat pump Space heater Smoke exhaust ductwork Thermal expansion valve Thermal wheel Thermosiphon Thermostatic radiator valve Trickle vent Trombe wall Turning vanes Ultra-low particulate air (ULPA) Whole-house fan Windcatcher Wood-burning stove
In 1758, Benjamin Franklin and John Hadley, a chemistry professor at Cambridge University, conducted an experiment to explore the principle of evaporation as a means to rapidly cool an object. Franklin and Hadley confirmed that evaporation of highly volatile liquids (such as alcohol and ether) could be used to drive down the temperature of an object past the freezing point of water. They conducted their experiment with the bulb of a mercury thermometer as their object and with a bellows used to speed up the evaporation. They lowered the temperature of the thermometer bulb down to −14 °C (7 °F) while the ambient temperature was 18 °C (64 °F). Franklin noted that, soon after they passed the freezing point of water 0 °C (32 °F), a thin film of ice formed on the surface of the thermometer's bulb and that the ice mass was about 6 mm (1⁄4 in) thick when they stopped the experiment upon reaching −14 °C (7 °F). Franklin concluded: "From this experiment one may see the possibility of freezing a man to death on a warm summer's day."[9]

Mitsubishi Electric is a world leader in air conditioning systems for residential, commercial and industrial use. Challenged to create air conditioning systems that provide exemplary performance in the wide-ranging climatic conditions found throughout Japan, our engineers develop amazingly sophisticated yet durable units and systems capable of constant use under virtually any natural climatic condition on earth.
Air conditioners often use a fan to distribute the conditioned air to an occupied space such as a building or a car to improve thermal comfort and indoor air quality. Electric refrigerant-based AC units range from small units that can cool a small bedroom, which can be carried by a single adult, to massive units installed on the roof of office towers that can cool an entire building. The cooling is typically achieved through a refrigeration cycle, but sometimes evaporation or free cooling is used. Air conditioning systems can also be made based on desiccants (chemicals which remove moisture from the air) and subterraneous pipes that can distribute the heated refrigerant to the ground for cooling.[2]

Ground source, or geothermal, heat pumps are similar to ordinary heat pumps, but instead of transferring heat to or from outside air, they rely on the stable, even temperature of the earth to provide heating and air conditioning. Many regions experience seasonal temperature extremes, which would require large-capacity heating and cooling equipment to heat or cool buildings. For example, a conventional heat pump system used to heat a building in Montana's −70 °F (−57 °C) low temperature or cool a building in the highest temperature ever recorded in the US—134 °F (57 °C) in Death Valley, California, in 1913 would require a large amount of energy due to the extreme difference between inside and outside air temperatures. A few feet below the earth's surface, however, the ground remains at a relatively constant temperature. Utilizing this large source of relatively moderate temperature earth, a heating or cooling system's capacity can often be significantly reduced. Although ground temperatures vary according to latitude, at 6 feet (1.8 m) underground, temperatures generally only range from 45 to 75 °F (7 to 24 °C).
An electric furnace provides warmth by moving air over and through a series of coils. Ductwork and vents then distribute that air to the individual rooms in your home. Repair costs will depend on both the brand and the exact nature of the problem, but tend to be lower than some of the options above. That's because the units are small, and issues tend to be contained within the heating elements themselves. Expect to spend less than $300 on your electric furnace repair, depending on the exact problem.
Please give us a call today at 1-800-948-MIKE (6453) for first-class air conditioning service and repairs in the Springfield, VA, Rockville, Silver Spring, MD & Washington D.C. metro area. We’re open seven days a week and provide 24/7 emergency service. For those who want to ensure that their AC unit is in working order before the summer season begins – or at any other time – we proudly offer a Heating & Cooling precision tune up to troubleshoot any potential AC problems. Upon completion of the AC inspection, we will provide you with a comprehensive written report regarding your Air Conditioning and Heating system’s status and make any recommendations necessary to improve your comfort level and head off any problems before they arise.
The basic concept behind air conditioning is said to have been applied in ancient Egypt, where reeds were hung in windows and were moistened with trickling water. The evaporation of water cooled the air blowing through the window. This process also made the air more humid, which can be beneficial in a dry desert climate. In ancient Rome, water from aqueducts was circulated through the walls of certain houses to cool them. Other techniques in medieval Persia involved the use of cisterns and wind towers to cool buildings during the hot season.[5]
While there's nothing you can do to guarantee your air conditioner or furnace will never need repairs, there are ways to take better care of your system. Changing out the air filters every 3-6 months, making sure nothing is obstructing or interfering with the outside unit, and keeping all vents unblocked in well-used rooms will help keep your air conditioning and heating system operating efficiently.

As a top provider of top-rated air conditioners and professional service, Four Seasons Heating and Air Conditioning is here to ensure that you have the cool and comfortable living environment that you deserve. Learn more about what we have to offer today by giving us a call, or request additional information now by filling out our brief online quote form!


It can be difficult to find the right company to do Aurora furnace repair and Aurora furnace replacement. When looking for the right help choose an Aurora furnace replacement and repair company that comes recommended and has a strong reputation. As a licensed furnace replacement company in Denver, Brothers Plumbing Heating and Electric has been working on the repair and replacement of furnaces for many years. Furthermore, we have a long list of happy customers that recommend us to all their friends and family.
In the most general sense, air conditioning can refer to any form of technology that modifies the condition of air (heating, (de-)humidification, cooling, cleaning, ventilation, or air movement). In common usage, though, "air conditioning" refers to systems which cool air. In construction, a complete system of heating, ventilation, and air conditioning is referred to as HVAC.[3]

If you hear clicking that is followed by a hum or buzz, you’re probably hearing the fan motor attempting to start without the boost it needs from the capacitor. You can almost always conclude that the capacitor has failed. Sometimes you can get the compressor fan spinning (clockwise) by pushing it with a thin stick or long screwdriver poked through the grille. But the chances are good that this might work for one cycle, but the capacitor will fail next time the AC goes on. It’s best to replace the capacitor.
The heat pump gained popularity in the 1950s in Japan and the United States.[13] Heat pumps can extract heat from various sources, such as environmental air, exhaust air from a building, or from the ground. Initially, heat pump HVAC systems were only used in moderate climates, but with improvements in low temperature operation and reduced loads due to more efficient homes, they are increasing in popularity in cooler climates.
Our professional, certified HVAC technicians go through a rigorous in-house training program to ensure they are knowledgeable and committed to providing outstanding customer service. Contact us when you need a repair, service, maintenance or efficiency tune-up for your central air conditioning system. A professional, knowledgeable technician will show up on time, in uniform and will perform the work your system needs to operate at peak efficiency.
The chill of winter can be a scary thought when your furnace needs repair. When the furnace in your home goes on the fritz, you need it fixed right away to keep your family safe and comfortable. Every BGE HOME technician is licensed and adheres to a stringent in-house certification program that guarantees their knowledge, affirms their commitment to the customer, and ensures excellence in completing every furnace repair with the highest level of quality.
×