Inside the unit, the air passes over the evaporator coil first, and is cooled and dehumidified. The now dehumidified, cold air then passes over the condenser coil where it is warmed up again. Then the air is released back into the room. The unit produces warm, dehumidified air and can usually be placed freely in the environment (room) that is to be conditioned.
We’ve found that many homes and businesses in Atlanta face significant indoor air quality issues as a result of the seasonal high humidity in our area, which creates conditions ripe for mold and mildew growth in both old and new HVAC systems. Our HVAC technicians can help you determine which strategies will work best for neutralizing airborne particulates in your home, which often involves a combination of filtration methods and ultraviolet light technology that together can help keep your system perpetually free of contaminants. We can also install whole-house dehumidifiers and humidifiers, which can make a huge difference in the amount of work your HVAC unit will have to do to be effective.

Before opening the electrical cover on the A/C unit, be sure to shut off all power to the compressor unit and the indoor furnace or air handler, and verify that it is off. Note that this may mean shutting off a circuit breaker that serves the furnace and air handler, and then, near the compressor, pulling out the disconnect block (or shutting off the 220-volt power) to the outdoor compressor.

In 1758, Benjamin Franklin and John Hadley, a chemistry professor at Cambridge University, conducted an experiment to explore the principle of evaporation as a means to rapidly cool an object. Franklin and Hadley confirmed that evaporation of highly volatile liquids (such as alcohol and ether) could be used to drive down the temperature of an object past the freezing point of water. They conducted their experiment with the bulb of a mercury thermometer as their object and with a bellows used to speed up the evaporation. They lowered the temperature of the thermometer bulb down to −14 °C (7 °F) while the ambient temperature was 18 °C (64 °F). Franklin noted that, soon after they passed the freezing point of water 0 °C (32 °F), a thin film of ice formed on the surface of the thermometer's bulb and that the ice mass was about 6 mm (1⁄4 in) thick when they stopped the experiment upon reaching −14 °C (7 °F). Franklin concluded: "From this experiment one may see the possibility of freezing a man to death on a warm summer's day."[9]

With the ice and snow in the Charlotte area this week be sure to look at your outdoor unit for ice or snow buildup, especially if you have a heat pump. You can carefully attempt to remove any frozen buildup by pouring warm water over the unit to melt the snow and ice. Do not use any sharp objects to pick or knock the ice off, this could cause severe damage to the unit
Call Miller's Air Conditioning & Heating at (925) 583-6387 and always speak with a live and helpful member of our team, who will immediately focus on your requirements.  While our competitors punch a strict time clock, we realize heating and cooling challenges often arise outside of regular business hours.  Rather than leave a message on a machine, take advantage of personalized service and the prompt response of radio dispatched trucks.
This type of furnace is fueled by liquid propane gas, which is burned to push hot air through your home. A pilot light ignites the burners within a combustion chamber, which push heat into the heat exchanger and eventually through your entire home. Repairing this type of furnace can be more expensive than its electric alternative. For example here are some common propane gas repairs and their costs:

The three major functions of heating, ventilation, and air conditioning are interrelated, especially with the need to provide thermal comfort and acceptable indoor air quality within reasonable installation, operation, and maintenance costs. HVAC systems can be used in both domestic and commercial environments. HVAC systems can provide ventilation, and maintain pressure relationships between spaces. The means of air delivery and removal from spaces is known as room air distribution.[3]
SEER is related to the coefficient of performance (COP) commonly used in thermodynamics and also to the Energy Efficiency Ratio (EER). The EER is the efficiency rating for the equipment at a particular pair of external and internal temperatures, while SEER is calculated over a whole range of external temperatures (i.e., the temperature distribution for the geographical location of the SEER test). SEER is unusual in that it is composed of an Imperial unit divided by an SI unit. The COP is a ratio with the same metric units of energy (joules) in both the numerator and denominator. They cancel out, leaving a dimensionless quantity. Formulas for the approximate conversion between SEER and EER or COP are available.[34]
Replacing a capacitor is easy. Just take a photo of the wires before disconnecting anything (you may need a reference later on). Then discharge the stored energy in the old capacitor (Photo 4). Use needle-nose pliers to pluck one wire at a time from the old capacitor and snap it onto the corresponding tab of the new capacitor. The female crimp connectors should snap tightly onto the capacitor tabs. Wiggle each connector to see if it’s tight. If it’s not, remove the connector and bend the rounded edges of it so it makes a tighter fit on the tab. When you’ve swapped all the wires, secure the new capacitor (Photo 5).
Modern refrigerants have been developed to be more environmentally safe than many of the early chlorofluorocarbon-based refrigerants used in the early- and mid-twentieth century. These include HCFCs (R-22, as used in most U.S. homes before 2011) and HFCs (R-134a, used in most cars) have replaced most CFC use. HCFCs, in turn, are supposed to have been in the process of being phased out under the Montreal Protocol and replaced by HFCs such as R-410A, which lack chlorine.[14] HFCs, however, contribute to climate change problems. Moreover, policy and political influence by corporate executives resisted change.[15][16] Corporations insisted that no alternatives to HFCs existed. The environmental organization Greenpeace provided funding to a former East German refrigerator company to research an alternative ozone- and climate-safe refrigerant in 1992. The company developed a hydrocarbon mix of isopentane and isobutane, but as a condition of the contract with Greenpeace could not patent the technology, which led to its widespread adoption by other firms.[17][18][19] Their activist marketing first in Germany led to companies like Whirlpool, Bosch, and later LG and others to incorporate the technology throughout Europe, then Asia, although the corporate executives resisted in Latin America, so that it arrived in Argentina produced by a domestic firm in 2003, and then finally with giant Bosch's production in Brazil by 2004.[20][21]
SEER is related to the coefficient of performance (COP) commonly used in thermodynamics and also to the Energy Efficiency Ratio (EER). The EER is the efficiency rating for the equipment at a particular pair of external and internal temperatures, while SEER is calculated over a whole range of external temperatures (i.e., the temperature distribution for the geographical location of the SEER test). SEER is unusual in that it is composed of an Imperial unit divided by an SI unit. The COP is a ratio with the same metric units of energy (joules) in both the numerator and denominator. They cancel out, leaving a dimensionless quantity. Formulas for the approximate conversion between SEER and EER or COP are available.[34]
In the event of an emergency with your residential heating and cooling system, we understand that you simply cannot wait! At R.S. Andrews, we take your comfort and well-being seriously and are proud to offer our emergency HVAC repair at any hour, on any day—including weekends! We provide only the highest quality services to ensure your needs are met!
If your furnace has a pilot light, look for the flame. Check your owner’s manual or the instructions posted inside the furnace cabinet for step-by-step lighting instructions. Usually this involves first turning the gas valve to Off and waiting a couple of minutes. Then you turn it to Pilot. Next, press and hold it down while you light the flame. Last, wait a minute or so, release it, and then turn it to On.
At Wm. Price Heating & Cooling, we know how uncomfortable it can be to live without a reliable air conditioning system in Girard, Austintown, Canfield, Niles, Youngstown & Boardman, OH. We provide regular air conditioner maintenance, high quality repairs, and expert installations to our valued customers across Girard, Austintown, Canfield, Niles, Youngstown & Boardman, OH. You’ll enjoy superior comfort all season long with services from Wm. Price Heating & Cooling. Our A/C technicians are highly trained and qualified, as well as dedicated to cleanliness and efficiency. We’re known for our unique red booties, which protect your home from dirt and damage. As a proud Carrier Factory Authorized Dealer, we provide industry leading cooling products, so you know you’ll have the best cooling products in your home or commercial space. Give us a call today to learn about all the air conditioning services we have to provide!
If your compressor doesn’t have an overload button and you hear it humming or buzzing, poke a screwdriver or stick down through the top grille and try to spin the fan blades clockwise. If doing this gives the fan enough of a boost to get it going, the unit has a faulty capacitor that must be replaced. See How to Test and Replace an AC Run Capacitor, above.
High-efficiency condensing furnaces (90% AFUE and above) are a bit more complex than conventional furnaces. The main differences between a conventional and condensing furnace are the heat exchanger technology used to extract heat from the combustion process and the method used to exhaust the combustion gases. In these ways, the furnaces are very different. The condensing furnace does not have a significantly more efficient combustion process than does a conventional furnace; both use gas burners with electronic ignition. The difference lies in that the condensing furnace has a more efficient heat extraction process after combustion.
×