Air conditioners can create a lot of water because they remove moisture from the air. To get rid of this, they have a [usually plastic] drain pipe that comes out of the side of the air handler. Over time, algae can block this pipe and, when it does, the AC won’t work. In fact, some condensate drains have a float switch that won’t let the AC run if water backs-up. Water can also puddle around the unit or flood the area. To deal with condensate problems, please see Air Conditioner Leaks Water, below.
The manufacture and use of CFCs has been banned or severely restricted due to concerns about ozone depletion (see also Montreal Protocol).[63][64] In light of these environmental concerns, beginning on November 14, 1994, the U.S. Environmental Protection Agency has restricted the sale, possession and use of refrigerant to only licensed technicians, per rules under sections 608 and 609 of the Clean Air Act.[65]
Mountain Valley Home Comfort provides expert heating and cooling services in Virginia’s Shenandoah Valley.  Our team of licensed, trained, and experienced professionals handle new installation, retrofit projects, seasonal maintenance and challenging repairs.  When you call on Mountain Valley Home Comfort at (540) 740-3844, we target sustainable solutions to temperature control, saving you time and money, and protecting comfort and budget. Personalizing our services to meet your needs, we ensure the right answer to any requirement.  With organized job sites, swift response, and quick turnaround, our professionals resolve any difficulty and take the best possible care of your essential HVAC equipment.

Ventilating or ventilation (the V in HVAC) is the process of exchanging or replacing air in any space to provide high indoor air quality which involves temperature control, oxygen replenishment, and removal of moisture, odors, smoke, heat, dust, airborne bacteria, carbon dioxide, and other gases. Ventilation removes unpleasant smells and excessive moisture, introduces outside air, keeps interior building air circulating, and prevents stagnation of the interior air.

The three major functions of heating, ventilation, and air conditioning are interrelated, especially with the need to provide thermal comfort and acceptable indoor air quality within reasonable installation, operation, and maintenance costs. HVAC systems can be used in both domestic and commercial environments. HVAC systems can provide ventilation, and maintain pressure relationships between spaces. The means of air delivery and removal from spaces is known as room air distribution.[3]

Turn off the gas supply valve, typically located by your gas meter on the gas inlet pipe. Turn off the gas by rotating the valve one quarter turn with an adjustable wrench. When the gas is off,  the valve’s oblong stem points perpendicular to the inlet pipe. Then call your gas utility or the fire department from a remote location. Do not return to your home until you know it is safe.
Air conditioning is common in the US, with 88% of new single-family homes constructed in 2011 including air conditioning, ranging from 99% in the South to 62% in the West.[50] In Canada, air conditioning use varies by province. In 2013, 55% of Canadian households reported having an air conditioner, with high use in Manitoba (80%), Ontario (78%), Saskatchewan (67%), and Quebec (54%) and lower use in Prince Edward Island (23%), British Columbia (21%), and Newfoundland and Labrador (9%).[51] In Europe, home air conditioning is generally less common. Southern European countries such as Greece have seen a wide proliferation of home air-conditioning units in recent years.[52] In another southern European country, Malta, it is estimated that around 55% of households have an air conditioner installed.[53] In India AC sales have dropped by 40%[clarification needed] due to higher costs and stricter energy efficiency regulations.[54]

Central air conditioners are more efficient than room air conditioners. In addition, they are out of the way, quiet, and convenient to operate. To save energy and money, you should try to buy an energy-efficient air conditioner and reduce your central air conditioner’s energy use. In an average air-conditioned home, air conditioning consumes more than 2,000 kilowatt-hours of electricity per year, causing power plants to emit about 3,500 pounds of carbon dioxide and 31 pounds of sulfur dioxide.
When central air conditioning service fails during a heat spell, you may have to wait days for an HVAC repair technician or a ac contractor to show up, and you’ll probably pay at least several hundred for the repair. But if you’re comfortable working around electricity and are willing to spend about $50 on parts, you can probably repair your air conditioning service yourself in about two hours and save about $225 on parts markup and labor.

Heaters exist for various types of fuel, including solid fuels, liquids, and gases. Another type of heat source is electricity, normally heating ribbons composed of high resistance wire (see Nichrome). This principle is also used for baseboard heaters and portable heaters. Electrical heaters are often used as backup or supplemental heat for heat pump systems.
You might guess it from the name: the heat exchanger is the part of your furnace that actually heats the air your blower motor pushes through the furnace. It consists of a chamber in which the heat energy produced by natural or propane gas is transferred to the forced air. At the same time, this part also includes a vent through which the gases themselves are safely removed from the unit and the air that enters your home. Because of these gases, a problem with your heat exchanger needs to be dealt with promptly. Over time, cracks in the exchanger can result in carbon monoxide leaks. Taking care of the problem once again means understanding the existence of a range: repairing your heat exchanger can cost as little as $100, but a full replacement may cost up to $1,200.
Engineers have pointed out some areas where efficiency of the existing hardware could be improved. For example, the fan blades used to move the air are usually stamped from sheet metal, an economical method of manufacture, but as a result they are not aerodynamically efficient. A well-designed blade could reduce electrical power required to move the air by a third.[26]
A dehumidifier is an air-conditioner-like device that controls the humidity of a room or building. It is often employed in basements which have a higher relative humidity because of their lower temperature (and propensity for damp floors and walls). In food retailing establishments, large open chiller cabinets are highly effective at dehumidifying the internal air. Conversely, a humidifier increases the humidity of a building.
In order to get the most out of your equipment, we highly recommend proper preventative HVAC maintenance. You’ll want to make sure from the outset that you have access to skilled and knowledgeable technicians who have been factory-trained to service your particular model, since different systems require different highly specific modifications. It’s advisable to find a reputable HVAC dealer in the Atlanta area that guarantees their work and offers annual service contracts to their customers to ensure necessary seasonal maintenance is always being performed regularly. Many times, timely adjustments and filter changes that are done on a regular basis can wind up saving you from breakdowns that always seem to occur right when you need your system the most.
A heat pump is an air conditioner in which the refrigeration cycle can be reversed, producing heating instead of cooling in the indoor environment. They are also commonly referred to as a "reverse cycle air conditioner". The heat pump is significantly more energy efficient than electric resistance heating. Some homeowners elect to have a heat pump system installed as a feature of a central air conditioner. When the heat pump is in heating mode, the indoor evaporator coil switches roles and becomes the condenser coil, producing heat. The outdoor condenser unit also switches roles to serve as the evaporator, and discharges cold air (colder than the ambient outdoor air).

In a thermodynamically closed system, any power dissipated into the system that is being maintained at a set temperature (which is a standard mode of operation for modern air conditioners) requires that the rate of energy removal by the air conditioner increase. This increase has the effect that, for each unit of energy input into the system (say to power a light bulb in the closed system), the air conditioner removes that energy.[30] To do so, the air conditioner must increase its power consumption by the inverse of its "efficiency" (coefficient of performance) times the amount of power dissipated into the system. As an example, assume that inside the closed system a 100 W heating element is activated, and the air conditioner has a coefficient of performance of 200%. The air conditioner's power consumption will increase by 50 W to compensate for this, thus making the 100 W heating element cost a total of 150 W of power.

Yes. You should expect to pay a diagnostic fee to cover the cost of the technician's visit, the diagnosis of your air conditioner's problem, and a quote for the repair options. You will be advised of the issue along with recommended options to correct it, which may include a system replacement if your unit is old or significantly damaged. If you decide to replace the system, the diagnostic fee will be credited toward your replacement purchase.
Our licensed HVAC Dallas Air Conditioning technicians are experts in air conditioning, heating & cooling technology and the latest innovations in green technology, including the installation of Energy Star certified products and the use of Ozone friendly refrigerants. Residential customers depend on Berkeys for timely, quality, and affordable air conditioning repair, maintenance, and installation solutions in Dallas. Read our Air Conditioning Reviews.
Sometimes a heating and air conditioning system just needs to be repaired rather than completely replaced. You may need air conditioning repair services if there is leaking around the outside unit, the air coming into the house isn't hot or cool enough, the unit is short-cycling or constantly turning on and off, using the system is consistently resulting in higher-than-normal energy bills, or if there is excessive noise during startup and operation.
The contactor (relay) and start/run capacitor(s) (see illustration below) fail most often and are inexpensive. So it’s a safe bet to buy and install those parts right away, especially if your air conditioning service unit is older than five years. The condenser fan motor can also fail, but it runs about $150 — hold off buying that unless you’re sure that’s the culprit.
Need 24-hour emergency furnace repair? We can provide that too. With our same-day service and live phone and online chat service available 24/7, we make your comfort our greatest priority. Heating and air conditioning should help you live a comfortable life, so let us help you make your home the most comfortable it has ever been. It’s easy, just grab your furnace repair coupon, then simply give us a call at 301-747-3140, chat or schedule an appointment with us online.
As touched on by their name, heat pumps function by transferring heat energy indoors during the winter and outdoors from your home during the summer. They're often attached to air conditioning units, using the surrounding air to transfer energy. However, geothermal heat pumps and water source heat pumps are also available. The cost to repair a heat pump, again, depends on the specific problem. Replacing a faulty thermostat may cost up to $300 including labor, while a worn or damaged defrost control board can set you back up to $600. For more details on your potential repair costs using this heating source, visit our heat pump repair cost guide.
Before calling to schedule your appointment, it may be helpful to familiarize yourself with the air conditioning equipment that you have. Make sure you know at least the brand name, the model and the approximate age of the system, as well as any warranties that may be in effect—and read through our AC FAQ to see if any of your symptoms sound familiar.
Air conditioners can create a lot of water because they remove moisture from the air. To get rid of this, they have a [usually plastic] drain pipe that comes out of the side of the air handler. Over time, algae can block this pipe and, when it does, the AC won’t work. In fact, some condensate drains have a float switch that won’t let the AC run if water backs-up. Water can also puddle around the unit or flood the area. To deal with condensate problems, please see Air Conditioner Leaks Water, below.
In the UK, the Ozone Regulations[62] came into force in 2000 and banned the use of ozone depleting HCFC refrigerants such as R22 in new systems. The Regulation banned the use of R22 as a "top-up" fluid for maintenance between 2010 (for virgin fluid) and 2015 (for recycled fluid). This means that equipment that uses R22 can still operate, as long as it does not leak. Although R22 is now banned, units that use the refrigerant can still be serviced and maintained.
Air-source heat pumps are more popular in milder winter climates where the temperature is frequently in the range of 4–13 °C (40–55 °F), because heat pumps become inefficient in more extreme cold. This is because ice forms on the outdoor unit's heat exchanger coil, which blocks air flow over the coil. To compensate for this, the heat pump system must temporarily switch back into the regular air conditioning mode to switch the outdoor evaporator coil back to being the condenser coil, so that it can heat up and defrost. A heat pump system will therefore have a form of electric resistance heating in the indoor air path that is activated only in this mode in order to compensate for the temporary indoor air cooling, which would otherwise be uncomfortable in the winter.

The manufacture and use of CFCs has been banned or severely restricted due to concerns about ozone depletion (see also Montreal Protocol).[63][64] In light of these environmental concerns, beginning on November 14, 1994, the U.S. Environmental Protection Agency has restricted the sale, possession and use of refrigerant to only licensed technicians, per rules under sections 608 and 609 of the Clean Air Act.[65]
In order to get the most out of your equipment, we highly recommend proper preventative HVAC maintenance. You’ll want to make sure from the outset that you have access to skilled and knowledgeable technicians who have been factory-trained to service your particular model, since different systems require different highly specific modifications. It’s advisable to find a reputable HVAC dealer in the Atlanta area that guarantees their work and offers annual service contracts to their customers to ensure necessary seasonal maintenance is always being performed regularly. Many times, timely adjustments and filter changes that are done on a regular basis can wind up saving you from breakdowns that always seem to occur right when you need your system the most.
Demand controlled kitchen ventilation (DCKV) is a building controls approach of slowing down kitchen exhaust fans and subsequent supply air in response to the actual cooking loads in a commercial kitchen. Traditional commercial kitchen ventilation systems operate at 100% fan speed independent of the volume of cooking activity and DCKV technology changes that to provide significant fan energy and conditioned air savings. By deploying smart sensing technology, both the exhaust and supply fans can be controlled to capitalize on the Law of Affinity for motor energy savings, reduce makeup air heating and cooling energy, increasing safety and reducing ambient kitchen noise levels.[27]
To protect your investments, we also offer Comfort & Energy Savings Plans that cover system tune-ups while offering you priority and same-day service. These residential maintenance plans improve the quality of indoor air in your home while saving you up to 30% on utility costs with regular cleanings. Call us today at (850) 785-9708 to protect your investment with a comfort and energy savings plan!
Designed to improve manufacturing process control in a printing plant, Carrier's invention controlled not only temperature but also humidity. Carrier used his knowledge of the heating of objects with steam and reversed the process. Instead of sending air through hot coils, he sent it through cold coils (filled with cold water). The air was cooled, and thereby the amount of moisture in the air could be controlled, which in turn made the humidity in the room controllable. The controlled temperature and humidity helped maintain consistent paper dimensions and ink alignment. Later, Carrier's technology was applied to increase productivity in the workplace, and The Carrier Air Conditioning Company of America was formed to meet rising demand. Over time, air conditioning came to be used to improve comfort in homes and automobiles as well. Residential sales expanded dramatically in the 1950s.[citation needed]
In 1995, Germany made CFC refrigerators illegal.[22] DuPont and other companies blocked the refrigerant in the U.S. with the U.S. EPA, disparaging the approach as "that German technology".[21][23] Nevertheless, in 2004, Greenpeace worked with multinational corporations like Coca-Cola and Unilever, and later Pepsico and others, to create a corporate coalition called Refrigerants Naturally!.[22][24] Then, four years later, Ben & Jerry's of Unilever and General Electric began to take steps to support production and use in the U.S.[25] In 2011 the EPA decided in favor of the ozone- and climate-safe refrigerant for U.S. manufacture.[17][26][27]
Multiple inventions within this time frame preceded the beginnings of first comfort air conditioning system, which was designed in 1902 by Alfred Wolff (Cooper, 2003) for the New York Stock Exchange, while Willis Carrier equipped the Sacketts-Wilhems Printing Company with the process AC unit the same year. Coyne College was the first school to offer HVAC training in 1899.[12]
©2018 By Horizon Services, LLC. All Rights Reserved. DE License # PL0000726, HL0000299. Contractor Reg. # PA017876, PA057742. NJ Plumbing Lic. # PL36BI01232300 - David Geiger HIC reg. # 13VH05117300, NJ Master HVACR contractor Lic. # 19HC00193700. MD Master HVACR contractor Lic. # 47186, MD Master Plumber/Gas Fitter Lic. # 63739 – David Geiger. EL.LIC./B.P. #34EI01207700.
×